Table 3. Torsion angles (${ }^{\circ}$) and dihedral angles (${ }^{\circ}$) between planes

Torsion angles				
	(I)	(II)	(III)	(IV)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	- 148 (1)	- 146 (2)	-90 (5)	-137.0 (6)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(7)$	141 (2)	141 (2)	-161 (4)	151.0 (6)
$\mathrm{C}(3)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{O}(9)$	41 (2)	36 (3)	39 (6)	26.2 (4)
$\mathrm{C}(4)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{O}(9)$	-30 (3)	-36 (3)	-36 (6)	-45.0 (5)
$\mathrm{O}(9)-\mathrm{C}(8)-\mathrm{O}(10)-\mathrm{C}(11)$	5 (2)	6 (2)	7 (5)	7.0 (4)
$\mathrm{C}(8)-\mathrm{O}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	93 (2)	95 (2)	104 (3)	159.6 (5)
$\mathrm{O}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	7 (2)	3 (2)	-106 (3)	- $106 \cdot 2$ (5)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{O}(18)-\mathrm{C}(19)$	-30 (2)	-27 (3)	-136 (3)	$-160 \cdot 0$ (6)
$\mathrm{C}(14)-\mathrm{O}(18)-\mathrm{C}(19)-\mathrm{C}(24)$	-55 (2)	-56 (2)	21 (5)	-132.3 (6)
Dihedral angles between planes				
Planes* (I)	(II)		(III)	(IV)
(1)-(2) 114	116		35	48
(1)-(3) 137	134		90	54
(1)-(4) 115	116		92	64
(2)-(3) 81	80		78	75
(2)-(4) 11	10		126	61
(3)-(4) 73	72		124	118

The resulting atomic coordinates appear in Table 1* and the atom numbering in Fig. 1. Table 2 shows the bond lengths and angles. The absolute configuration of (IV) has not been established for this structure determination but is known to be cis $(1 R, 2 R)$ for the cyclopropane and S for the benzylic α-C atom.

[^0]Discussion. According to the substituents ($X=\mathrm{Br}, \mathrm{Cl}$ and $R=\mathrm{CN}, \mathrm{H}$), we have four different pyrethroid molecules. Planes and torsion angles are defined as in Owen (1976). From Table 3, it is seen that two molecular conformations dominate in these four molecules. (I) is similar to (II) but different from (III) and (IV). The conformation of the molecule is certainly more dependent on the R substituent (CN , H) than the X one (Cl, Br).

Molecule (IV) ($X=\mathrm{Cl}, R=\mathrm{CN}$, our study) is more elongated than (III) where the Br atoms are pushed far away from the CN group due to electronic repulsion [torsion angles $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$ and $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(7)$ are -90 (III), -137 (IV), -161 (III), 151° (IV)]. The crystal structures of the pyrethroids evoked here show that there is a certain degree of flexibility at each end of the molecule with the ester linkage in the middle forming a fairly rigid entity.
No intermolecular distances between molecules are less than the sum of the van der Waals radii of the atoms involved.

References

Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1980). MUltan80. a System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Owen, J. P. (1975). J. Chem. Soc. Perkin Trans. I, pp. 1865-1968. Owen, J. P. (1976). J. Chem. Soc. Perkin Trans. I, pp. 1231-1235. Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). Chem. Phys. 42, 3175-3187.

Acta Cryst. (1991). C47, 608-611

Structure of 5-Methoxy-3-(1-methylethoxy)-1-phenyl- N-(1H-tetrazol-5-yl)-1H-indole-2-carboxamide-Diethylamine, a Potential Anti-Allergy Agent

By Masood Parvez*
Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
and Paul C. Unangst, David T. Connor and Michael D. Mullican*
Department of Chemistry, Parke-Davis Pharmaceutical Research Division, Warner-Lambert Company, Ann Arbor, MI 48105, USA

(Received 12 April 1990; accepted 18 June 1990)

Abstract. $\quad \mathrm{C}_{24} \mathrm{H}_{31} \mathrm{~N}_{7} \mathrm{O}_{3}, \quad M_{r}=465 \cdot 56$, monoclinic, $P 2_{1} / n, a=14.439$ (3), $b=9.147$ (2), $c=19 \cdot 207$ (5) \AA, $\beta=90 \cdot 89(2)^{\circ}, \quad V=2536 \cdot 4 \AA^{3}, \quad Z=4, \quad D_{x}=$

[^1]0108-2701/91/030608-04\$03.00

Abstract

$1.219 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda($ Mo K α) $=0.71073 \AA, \quad \mu=$ $0.078 \mathrm{~mm}^{-1}, \quad F(000)=992, \quad T=293 \mathrm{~K}$, final $R=$ 0.052 for 2731 observed reflections with $I>3 \sigma(I)$. The indole moiety is essentially planar, with the phenyl ring inclined at $68.03(8)^{\circ}$ to it. The tetrazole © 1991 International Union of Crystallography

ring is also planar with the mean planes of the tetrazole ring and the indole moiety lying at $10 \cdot 8(4)^{\circ}$. The carboxamide chain is fully extended with a CC-NC torsion angle of $174 \cdot 9$ (3) ${ }^{\circ}$. The drug anion and the diethylammonium cation are hydrogen bonded.

Introduction. Our efforts to discover anti-allergy drugs have led to the identification of a series of indolecarboxamidotetrazoles which are potent inhibitors of allergic mediator release from human basophils and from guinea pig and human chopped lung tissue challenged with anti-IgE (Unangst, Connor, Stabler, Weikert, Carethers, Kennedy, Thueson, Chestnut, Adolphson \& Conroy, 1989). The title compound (1) was selected from this series

(1)
and evaluated in the clinic as its arginine salt (CI949). A search of version 3.5 of the Cambridge Crystallographic Database (Allen, Kennard \& Taylor, 1983) using fragment (2) (single, delocalized or aromatic bond types allowed) resulted in no entries found containing (2). The crystal and molecu-

(2)
lar structure of (1), as its diethylamine salt, was determined to assist molecular-modeling studies in understanding the structural and conformational features necessary for inhibition of allergic mediator release.

Experimental. A suspension of $5.0 \mathrm{~g}(0.013 \mathrm{~mol})$ of the parent carboxamidotetrazole (Unangst, Connor, Stabler, Weikert, Carethers, Kennedy, Thueson, Chestnut, Adolphson \& Conroy, 1989) in 20 ml of absolute ethanol was warmed on the steam bath and treated with $5.0 \mathrm{ml}(3.5 \mathrm{~g} ; 0.048 \mathrm{~mol})$ of diethylamine. The warm mixture was alternately treated with methanol and water until homogeneous (final volume $\sim 225 \mathrm{ml}$). After hot filtration and cooling to room temperature, crystals of the diethylamine salt suitable for analysis were collected and washed with acetone to yield $4.1 \mathrm{~g}(69 \%$ yield $)$, m.p. 488 K dec.

Table 1. Summary of data collection and structure refinement

Crystal size (mm)
Diffractometer
Monochromator
Cell constants
$\theta_{\text {max }}\left({ }^{\circ}\right)$
Scan method
ω-scan width (${ }^{\circ}$)
Variable scan speed (${ }^{\circ} \min ^{-1}$)
Scan ranges of h, k, l
Intervals of standard reflections (s)
Crystal decay (\%)*
Data correction applied \dagger
Unique data measured
Data used [$I>3 \sigma(I)$]
$R_{\text {int }}$
Parameters refined
$R, w R$
Weighting scheme
$(\Delta / \sigma)_{\max }$ in last cycle
$\Delta \rho$, in final $\Delta F \operatorname{map}\left(\mathrm{e} \AA^{-3}\right)$ $\stackrel{\Delta}{S}$

* Linear decay, corrected for by appropriate scaling.
\dagger Absorption ignored.

Details of data collection and structure refinement are given in Table 1. The structure was solved by direct methods (MULTAN11/82; Main, Fiske, Hull, Lessinger, Germain, Declercq \& Woolfson, 1982) and refined by full-matrix least-squares calculations on F 's. H atoms were located from a difference map and included at these positions in the structure-factor calculations with the overall isotropic temperature factor $B_{\text {iso }}=4.0 \AA^{2} ; \mathrm{C}, \mathrm{N}$ and O had anisotropic temperature factors. Scattering factors used in the calculations were taken from Cromer \& Mann (1968) and Stewart, Davidson \& Simpson (1965). Computer programs used in this study were from the EnrafNonius Structure Determination Package (B. A. Frenz \& Associates, Inc., 1985) and ORTEPII (Johnson, 1976).

Discussion. Final fractional coordinates and equivalent isotropic thermal parameters with e.s.d.'s are listed in Table 2.* Table 3 contains bond lengths and angles. Fig. 1 shows the molecular structure of the title compound. Fig. 2 is a stereoview of the unit-cell packing. The indole moiety is essentially planar with maximum deviation of any atom 0.026 (3) \AA. The phenyl ring is also planar [max. deviation $0.005(4) \AA$] and is oriented at $68.03(8)^{\circ}$ to the indole moiety. The tetrazole ring is planar to within 0.005 (3) \AA and is linked to the indole moiety through a fully extended carboxamide group which exhibits a C7C9-N2C10 torsion angle of $174.9(3)^{\circ}$.

[^2]Table 2. Final fractional coordinates and equivalent isotropic thermal parameters (\AA^{2}) with e.s.d.'s in parentheses

	$\begin{aligned} B_{\mathrm{eq}}=a^{2} B_{11}+b^{2} B_{22} & +c^{2} B_{33}+a b \cos \gamma B_{12}+a c \cos \beta B_{13} \\ & +b c \cos \alpha B_{23} . \end{aligned}$			
	x	y	z	$B_{\text {eq }}$
O1	-0.0749 (1)	0.0355 (3)	0.6200 (1)	$4 \cdot 69$ (5)
O2	0.2269 (1)	0.4093 (3)	0.6798 (1)	3.66 (4)
O3	0.3022 (2)	$0 \cdot 6450$ (3)	0.4975 (1)	$5 \cdot 53$ (5)
N1	$0 \cdot 1664$ (2)	0.4194 (3)	0.4994 (1)	$3 \cdot 25$ (5)
N2	0.3491 (2)	0.5881 (3)	0.6068 (1)	$3 \cdot 80$ (5)
N3	0.4443 (2)	0.7888 (3)	0.5690 (1)	$4 \cdot 01$ (6)
N4	0.5103 (2)	0.8664 (3)	0.6033 (1)	$4 \cdot 22$ (6)
N5	0.5198 (2)	0.8185 (3)	0.6666 (1)	$4 \cdot 43$ (6)
N6	0.4611 (2)	0.7052 (3)	0.6763 (1)	4.06 (6)
N7	0.3846 (2)	-0.1162 (3)	0.4310 (1)	3.47 (5)
Cl	$0 \cdot 1121$ (2)	$0 \cdot 3021$ (3)	0.5945 (1)	$2 \cdot 96$ (5)
C2	0.0539 (2)	$0 \cdot 2050$ (3)	0.6308 (1)	3.27 (6)
C3	-0.0148 (2)	0.1354 (4)	0.5933 (2)	$3 \cdot 59$ (6)
C4	-0.0284 (2)	$0 \cdot 1635$ (4)	0.5216 (2)	3.93 (7)
C5	0.0279 (2)	0.2556 (4)	0.4861 (1)	$3 \cdot 65$ (6)
C6	0.0991 (2)	$0 \cdot 3243$ (3)	0.5233 (1)	$3 \cdot 15$ (6)
C7	0.2216 (2)	0.4593 (3)	0.5563 (1)	$3 \cdot 16$ (6)
C8	$0 \cdot 1896$ (2)	$0 \cdot 3905$ (3)	0.6142 (1)	$2 \cdot 99$ (6)
C9	0.2939 (2)	0.5714 (4)	0.5493 (1)	3.43 (6)
C10	0.4175 (2)	$0 \cdot 6929$ (3)	0.6160 (1)	3.01 (6)
C11	-0.0516 (3)	-0.0230 (5)	$0 \cdot 6859$ (2)	$5 \cdot 85$ (9)
C12	$0 \cdot 1850$ (2)	0.4416 (3)	0.4269 (1)	3.05 (6)
C13	0.1235 (2)	0.5189 (4)	0.3869 (2)	$4 \cdot 16$ (7)
C14	0.1411 (3)	0.5379 (5)	0.3164 (2)	$5 \cdot 58$ (9)
C15	$0 \cdot 2183$ (3)	0.4794 (5)	$0 \cdot 2881$ (2)	5.79 (9)
C16	0.2793 (2)	$0 \cdot 4028$ (5)	0.3282 (2)	$5 \cdot 54$ (9)
C17	0.2633 (2)	$0 \cdot 3816$ (4)	0.3979 (2)	$4 \cdot 46$ (7)
C18	$0 \cdot 1644$ (2)	0.4723 (4)	0.7311 (2)	$4 \cdot 63$ (8)
C19	0.2207 (4)	0.4903 (5)	0.7958 (2)	7.6 (1)
C20	$0 \cdot 1198$ (3)	$0 \cdot 6099$ (6)	0.7052 (2)	8.1 (1)
C21	0.4009 (3)	-0.2203 (4)	0.3730 (2)	4.92 (8)
C22	0.4907 (3)	-0.2970 (6)	$0 \cdot 3800$ (2)	7.4 (1)
C23	$0 \cdot 2903$ (2)	-0.0501 (4)	$0 \cdot 4307$ (2)	$4 \cdot 36$ (7)
C24	$0 \cdot 2742$ (3)	$0 \cdot 0300$ (5)	0.4967 (2)	$5 \cdot 77$ (9)

Fig. 1. ORTEP drawing of the drug anion and diethylammonium cation showing hydrogen bond.

The bond distances and angles in the indole moiety and its substituents, phenyl, methoxy and methylethoxy groups, are unexceptional. There is a delocalized negative charge on the tetrazole ring resulting in essentially equivalent ring $\mathrm{C}-\mathrm{N}$ dis-

Table 3. Bond distances (\AA) and bond angles $\left({ }^{\circ}\right)$

O1	C3	1.366 (4)	Cl	C6	1.393 (4)	
O1	C11	1.409 (4)	Cl	C8	1.427	(4)
O2	C8	1.372 (3)	C2	C3	1.372	(4)
O2	C18	1.465 (4)	C3	C4	1.412	(4)
O3	C9	1.209 (4)	C4	C5	1.361	
N1	C6	1.387 (4)	C5	C6	1.393	(4)
N1	C7	1.392 (3)	C7	C8	1.366	
N1	C12	1.435 (3)	C7	C9	1.470	(4)
N2	C9	1.359 (4)	C12	C13	1.362	
N2	C10	$1 \cdot 385$ (4)	C12	C17	1.381	(4)
N3	N4	1.351 (4)	C13	C14	1.393	
N3	C10	1.322 (4)	C14	C15	1.357	
N4	N5	1.298 (4)	C15	C16	1.356	
N5	N6	1.353 (4)	C16	C17	1.377	
N6	C10	1.316 (3)	C18	C19	1.482	
N7	C21	1.487 (4)	C18	C20	1.495	
N7	C23	1.490 (4)	C21	C22	1.479	
C1	C2	1.414 (4)	C23	C24	1.486	
C3	Ol	C11 116.6 (2)	N1	C7	C9	120.7 (2)
C8	O2	C18 115.5 (2)	C8	C7	C9	130.1 (3)
C6	N1	C7 107.4 (2)	O2	C8	Cl	127.6 (2)
C6	N1	C12 123.5 (2)	O2	C8	C7	123.9 (3)
C7	N1	C12 127.7 (2)	Cl	C8	C7	108.6 (2)
C9	N2	C10 126.1 (3)	O3	C9	N2	122.8 (3)
N4	N3	C10 103.1 (2)	O3	C9	C7	122.8 (3)
N3	N4	N5 110.1 (3)	N2	C9	C7	114.4 (2)
N4	N5	N6 109.3 (2)	N2	C10	N3	126.0 (2)
N5	N6	C10 103.7 (2)	N2	C10	N6	120.2 (3)
C21	N7	C23 114.3 (2)	N3	C10	N6	113.8 (3)
C2	C1	C6 120.2 (3)	N1	C12	C13	119.3 (3)
C2	C1	C8 134.0 (2)	N1	C12	C17	$120 \cdot 1$ (3)
C6	C1	C8 105.7 (2)	Cl 3	C12	Cl 7	120.6 (3)
C1	C2	C3 117.6 (3)	C 12	C13	C14	119.1 (3)
O1	C3	C2 124.8(3)	C13	C14	C 15	$120 \cdot 2$ (3)
O1	C3	C4 114.1 (3)	C14	C15	C16	120.4 (3)
C2	C3	C4 121.0 (3)	C15	C16	C17	$120 \cdot 6$ (3)
C3	C4	C5 121.8(3)	C12	C17	C 16	119.1 (3)
C4	C5	C6 117.7 (3)	O 2	C18	C19	$105 \cdot 8$ (3)
N1	C6	C1 109.4 (2)	O 2	C18	C20	111.9 (3)
N1	C6	C5 128.9 (3)	C19	C18	C20	114.4 (4)
Cl	C6	C5 121.6(3)	N7	C21	C22	112.6 (3)
N1	C7	C8 108.8 (2)	N7	C23	C24	$110 \cdot 6$ (3)

Fig. 2. Stereoview of a unit cell showing molecular packing.
tances [1.316 (3) and $1.322(4) \AA$]. The distance N4-N5 1.298 (4) \AA is clearly indicative of a double bond, which is significantly shorter than N3-N4 and N5-N6 bonds [1.351 (4) and 1.353 (4) \AA, respectively]. There are no unusual intermolecular distances less than van der Waals distances and the crystal appears to be composed of hydrogen-bonded
drug anions and diethylammonium cations (Fig. 2) with the N4 \cdots H1N 7 distance equal to $1.81 \AA$ and the N4…H1N7-N7 bond angle equal to $168 \cdot 5^{\circ}$.

References

Allen, F. H., Kennard, O. \& Taylor, R. R. (1983). Acc. Chem. Res. 16, 146-153.
B. A. Frenz \& Associates, Inc. (1985). SDP Structure Determination Package. College Station, Texas, USA.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Main, P., Fiske, S. J., Hull, S., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.
Unangst, P. C., Connor, D. T., Stabler, S. R., Weikert, R. J., Carethers, M. E., Kennedy, J. A., Thueson, D. O., Chestnut, J. C., Adolphson, R. L. \& Conroy, M. C. (1989). J. Med. Chem. 32, 1360-1366.

Acta Cryst. (1991). C47, 611-613

Structure of 3-(1-Methylethoxy)-7-phenyl-N-(1H-tetrazol-5-yl)-2benzofurancarboxamide, a Potential Anti-Allergy Agent

By Masood Parvez*
Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
and Paul C. Unangst, David T. Connor and Michael D. Mullican*
Department of Chemistry, Parke-Davis Pharmaceutical Research Division, Warner-Lambert Company, Ann Arbor, MI 48105, USA

(Received 12 April 1990; accepted 18 June 1990)

Abstract

C}_{19} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{3}, \quad M_{r}=363 \cdot 38\), monoclinic, $P 2_{1} / n, a=7.243$ (6), $b=11 \cdot 452$ (4), $c=20.552$ (4) \AA, $\beta=93.93(3)^{\circ}, \quad V=1701(2) \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.419 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda($ Mo $K \alpha)=0.71073 \AA, \quad \mu=$ $0.093 \mathrm{~mm}^{-1}, \quad F(000)=760, T=293 \mathrm{~K}$, final $R=$ 0.027 for 1239 observed reflections with $I>3 \sigma(I)$. The benzofuran moiety is essentially planar with the phenyl ring inclined at $139.53(7)^{\circ}$ to it . The tetrazole ring is also planar with the mean planes of the tetrazole ring and the benzofuran moiety lying at $8 \cdot 1(2)^{\circ}$. The carboxamide chain is fully extended with a CC-NC torsion angle of $177 \cdot 7$ (2) ${ }^{\circ}$. H atoms on the N atoms are involved in short intramolecular contacts ($\mathrm{O} \cdots \mathrm{H} 2 \cdot 058$ and $2 \cdot 236 \AA$).

Introduction. We have reported the crystal structure of 5-methoxy-3-(1-methylethoxy)-1-phenyl- N -(1 H -te-trazol-5-yl)-1 H -indole-2-carboxamide-diethylamine
(1) (Parvez, Unangst, Connor \& Mullican, 1991). Compound (1) is a potent inhibitor of allergic mediator release from human basophils and from guinea pig and human chopped lung tissue challenged with anti-IgE (Unangst, Connor, Stabler, Weikert, Carethers, Kennedy, Thueson, Chestnut, Adolphson \& Conroy, 1989). The crystal structure of

[^3]0108-2701/91/030611-03\$03.00
(2), a benzofuran analogue of (1), was determined to assist molecular-modeling studies in understanding the structural and conformational features necessary for inhibition of allergic mediator release.

(1)

(2)

Experimental. A mixture of $8.8 \mathrm{~g}(0.030 \mathrm{~mol})$ of $3-(1-$ methylethoxy)-7-phenyl-2-benzofurancarboxylic acid (Connor, Cetenko, Unangst \& Johnson, 1987) and $5.5 \mathrm{~g}(0.034 \mathrm{~mol})$ of $1,1^{\prime}$-carbonylbis(1 H -imidazole) in 180 ml of acetonitrile was stirred at reflux under a nitrogen atmosphere for 90 min . The cooled reaction mixture was treated with $3.0 \mathrm{~g}(0.035 \mathrm{~mol})$ of anhydrous 5 -aminotetrazole, followed by 10.0 ml ($7.3 \mathrm{~g} ; 0.072 \mathrm{~mol}$) of triethylamine. The mixture was again stirred at reflux for 16 h , cooled, added to 750 g of ice and water, and acidified with acetic acid. The precipitated product was filtered, washed with water, and recrystallized from methanol $/ N, N$ © 1991 International Union of Crystallography

[^0]: * Lists of structure factors, anisotropic thermal parameters, H -atom parameters and least-squares planes data have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53356 (27pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]: * Author to whom correspondence should be addressed.

[^2]: * Lists of structure factors, anisotropic thermal parameters, least-squares-planes data and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53305 (35 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^3]: * Author to whom correspondence should be addressed.

